Search results for "Mass excess"

showing 10 items of 11 documents

Penning-trap mass measurements on 92, 94-98, 100Mo with JYFLTRAP

2012

Penning-trap measurements on stable 92, 94-98, 100Mo isotopes have been performed with relative accuracy of \ensuremath1⋅10−8\ensuremath1⋅10−8 with the JYFLTRAP Penning-trap mass spectrometer by using 85Rb as a reference. The Mo isotopes have been found to be about 3keV more bound than given in the Atomic Mass Evaluation 2003 (AME03). The results confirm that the discrepancy between the ISOLTRAP and JYFLTRAP data for 101-105Cd isotopes was due to an erroneous value in the AME03 for 96Mo used as a reference at JYFLTRAP. The measured frequency ratios of Mo isotopes have been used to update mass-excess values of 30 neutron-deficient nuclides measured at JYFLTRAP. peerReviewed

nuclear spectroscopyPhysicsNuclear and High Energy PhysicsMass excessIsotopeaccelerator-based physicsPenning trapMass spectrometrykiihdytinpohjainen fysiikkaISOLTRAPAtomic massNuclear physicsydinrakennenuclear structureydinspektroskopiaNuclear fusionNuclideAtomic physicsydinfysiikkaThe European Physical Journal A
researchProduct

Confirmation of the new isotope Pb178

2016

The extremely neutron-deficient isotope $^{178}\mathrm{Pb}$ has been produced. The GREAT spectrometer at the focal plane position of the gas-filled separator RITU was used to study the $\ensuremath{\alpha}$ decay of $^{178}\mathrm{Pb}$ and its $\ensuremath{\alpha}$-decay chain through $\ensuremath{\alpha}\text{\ensuremath{-}}\ensuremath{\alpha}$ correlations. The $\ensuremath{\alpha}$ decay was measured to have an energy and half-life of ${E}_{\ensuremath{\alpha}}$= 7610(30) keV and ${t}_{1/2}=0.{21}_{\ensuremath{-}0.08}^{+0.21}$ ms, respectively. The half-life is consistent with recent theoretical calculations using the Coulomb and proximity potential model. The $\ensuremath{\alpha}$-decay…

PhysicsMass excessIsotope010308 nuclear & particles physics0103 physical sciencesCoulombAlpha decayAtomic physics010306 general physics01 natural sciencesPhysical Review C
researchProduct

Mass ofAl23for testing the isobaric multiplet mass equation

2009

The mass excess of the proton-rich nucleus $^{23}\mathrm{Al}$ has been measured with the JYFLTRAP Penning trap setup. As a result of our experiment we obtain a mass excess of 6748.07(34) keV, and by combining the value to existing experimental data we have tested the validity of the isobaric multiplet mass equation $(\mathrm{IMME})$ for the $T=3/2$ quartet in the $A=23$ isobar. The fit to the IMME results in a vanishing cubic term equivalent to zero with high precision [$0.22(42)$ keV].

PhysicsNuclear physicsMass formulaNuclear and High Energy PhysicsMass excessNuclear TheoryZero (complex analysis)IsobarIsobaric processAtomic physicsNuclear ExperimentPenning trapMultipletPhysical Review C
researchProduct

$Q$-value of the superallowed $\beta$ decay of 62Ga

2006

Masses of the radioactive isotopes 62Ga, 62Zn and 62Cu have been measured at the JYFLTRAP facility with a relative precision of better than 18 ppb. A Q_EC value of (9181.07 +- 0.54) keV for the superallowed decay of 62Ga is obtained from the measured cyclotron frequency ratios of 62Ga-62Zn, 62Ga-62Ni and 62Zn-62Ni ions. The resulting Ft-value supports the validity of the conserved vector current hypothesis (CVC). The mass excess values measured were (-51986.5 +-1.0) keV for 62Ga, (-61167.9 +- 0.9) keV for 62Zn and (-62787.2 +- 0.9) keV for 62Cu.

Nuclear and High Energy PhysicsMass excessQ valuePenning trapCyclotronFOS: Physical sciences27.50.+e; 23.40.-s; 24.80.+g; 21.10.Dr[PHYS.NEXP]Physics [physics]/Nuclear Experiment [nucl-ex]01 natural sciences7. Clean energyIonlaw.inventionNuclear physicslawDouble beta decayFt value0103 physical sciencesNuclear Experiment (nucl-ex)010306 general physicsNuclear ExperimentPhysicsRadionuclide010308 nuclear & particles physicsBeta decayQ-valueAtomic massAtomic mass
researchProduct

Mass measurements of neutron-deficient nuclei and their implications for astrophysics

2012

During the years 2005-2010 the double-Penning-trap mass spectrometer JYFLTRAP has been used to measure the masses of 90 ground and 8 isomeric states of neutron-deficient nuclides with a typical precision of better than 10keV. The masses of 14 nuclides -- 84Zr , 88, 89Tc , 90-92Ru , 92-94Rh , 94, 95Pd , 106, 108, 110Sb -- have been experimentally determined for the first time. This article gives an overview on these measurements and their impact on the modeling of the astrophysical rp -process. peerReviewed

nuclear spectroscopyPhysicsNuclear and High Energy PhysicsMass excessaccelerator-based physicsHadronMeasure (physics)Mass spectrometrykiihdytinpohjainen fysiikkaMass measurementNuclear physicsydinrakennenuclear structureydinspektroskopiaNuclear fusionNeutronNuclideydinfysiikkaThe European Physical Journal A
researchProduct

Direct mass measurements above uranium bridge the gap to the island of stability

2010

The mass of an atom incorporates all its constituents and their interactions. The difference between the mass of an atom and the sum of its building blocks (the binding energy) is a manifestation of Einstein's famous relation E = mc(2). The binding energy determines the energy available for nuclear reactions and decays (and thus the creation of elements by stellar nucleosynthesis), and holds the key to the fundamental question of how heavy the elements can be. Superheavy elements have been observed in challenging production experiments, but our present knowledge of the binding energy of these nuclides is based only on the detection of their decay products. The reconstruction from extended d…

Nuclear physicsMass numberMultidisciplinaryMass excessAtomic mass constantIsotopeChemistryNuclideAtomic physicsNuclear ExperimentAtomic massBeta-decay stable isobarsSpontaneous fission
researchProduct

Mass Measurements and Implications for the Energy of the High-Spin Isomer inAg94

2008

Nuclides in the vicinity of {sup 94}Ag have been studied with the Penning trap mass spectrometer JYFLTRAP at the Ion-Guide Isotope Separator On-Line. The masses of the two-proton-decay daughter {sup 92}Rh and the beta-decay daughter {sup 94}Pd of the high-spin isomer in {sup 94}Ag have been measured, and the masses of {sup 93}Pd and {sup 94}Ag have been deduced. When combined with the data from the one-proton- or two-proton-decay experiments, the results lead to contradictory mass excess values for the high-spin isomer in {sup 94}Ag, -46 370(170) or -44 970(100) keV, corresponding to excitation energies of 6960(400) or 8360(370) keV, respectively.

PhysicsNuclear physicsMass excessIsotopeAnalytical chemistryGeneral Physics and AstronomyNuclideSpin (physics)Penning trapMass spectrometryBeta decayExcitationPhysical Review Letters
researchProduct

Study of excited states of [sup 31]S through beta-decay of [sup 31]Cl for nucleosynthesis in ONe novae

2011

We have produced an intense and pure beam of 31Cl with the MARS Separator at the Texas A&M University and studied β‐decay of 31Cl by implanting the beam into a novel detector setup, capable of measuring β‐delayed protons and γ‐rays simultaneously. From our data, we have established decay scheme of 31Cl, found resonance energies with 1 keV precision, have measured its half‐life with under 1% accuracy, found its Isobar Analog State decay and by using the IMME obtained an improved mass excess for its ground state. In this contribution, a description of the used method along with selected preliminary experimental results are given and their relevance for novae nucleosynthesis discussed.

Nuclear physicsPhysicsDecay schemeMass excessta114NucleosynthesisExcited stateIsobarResonanceAtomic physicsGround stateBeta decayAIP Conference Proceedings
researchProduct

Mass and low-lying levels ofIn106,108from theCd106,108(p,nγ)reactions

1984

106In has been studied via the reaction 106Cd(p,nγ)106In in the energy range Ep=7-9 MeV. Inbeam γ-ray excitation functions, γ-γ coincidence measurements, and β+-delayed γ-ray excitation functions have been used to identify thirteen levels in 106In. From this new level scheme the energy separation of the high-spin ground state and the low-spin isomer has been determined to be 28.6±0.5 keV. The threshold energy of the strongest low-lying γ-ray transition yields a mass excess for 106In of -80601±15 keV. Spins for some states are suggested by comparing the excitation functions to Hauser-Feshbach calculations. In-beam γ-ray excitation functions for the 108Cd(p,nγ)108In reaction give a mass exces…

PhysicsNuclear reactionNuclear and High Energy PhysicsRange (particle radiation)Mass excessSpinsIsotopeAstrophysics::High Energy Astrophysical PhenomenaAtomic physicsGround stateThreshold energyExcitationPhysical Review C
researchProduct

Variable masses in fission and heavy-ion collisions

1972

With the use of the cranking formula, the coordinate-dependent mass parameters of the kinetic-energy operator in fission processes and heavy-ion collisions are calculated in the two-center oscillator model. It is shown that the reduced mass and also the classical moment of inertia are obtained for large separations of the fragments. For small separations, however, the mass parameter for the motion of the centers of mass of the fragments is larger than the reduced mass by an order of magnitude.

Nuclear reactionPhysicsMass excessFissionOperator (physics)General Physics and AstronomyReduced massMoment of inertiaKinetic energyUranium-236Nuclear physicsddc:530Atomic physicsNuclear Experiment
researchProduct